In past decades, urban water management practices focused on optimizing the design and operation of water distribution networks, wastewater collection systems, and water and wastewater treatment plants. However, municipalities are now faced with aging urban water infrastructures whose operation must be improved and expanded to maintain current high standards of living as well as new challenges such as climate change, systems sustainability and water quality issues. Integrating the latest developments in urban water hydrology and management, Urban Water Engineering and Management takes a system approach to urban water hydrology, engineering, planning and management, supplying examples and case studies and highlighting pressing issues such as urban water governance, disaster management, and climate change impacts on urban areas. The book draws attention to climate change as a main concern of this century by focusing on its impact the components of water cycle.
The book covers modeling of urban water cycle components, urban water supply, and distribution systems demand forecasting. It also presents classical issues, such as design of water distribution networks and wastewater and storm collection in urban settings, from a system's perspective. The text also includes a discussion of water governance and disaster management in urban areas and the urbanization effects on the environment and the needed water infrastructure development in urban areas. Against this background, the authors discuss the importance of understanding the principles of simulation, optimization, multiple-criterion decision making, and conflict resolution for successful, integrated urban water management. They explore integrated water management and planning solutions for incorporating structural and nonstructural means to achieve the best operational schemes at affordable costs, going beyond using the existing structures and physical limitations on water availability to include technical, social, political, and economic aspects of better water and wastewater management in urban areas.
Written and designed especially for intermediate and advanced courses/modules in water resources in civil and environmental engineering, and in urban planning, the book can be used as a textbook for civil engineering, urban and regional planning, geography, environmental science, and in courses dealing with urban water cycle. It also introduces new horizons for engineers as well as policy and decision makers who plan for future urban water and regional sustainability. Engineers and planners, especially those who work on design, planning, and management of urban systems and/or community development, can use this book in practice because it deals with a broad range of real world urban water problems.