Home > General > Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)
Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)

Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Drought is one of the most important factors limiting crop production in sub-Saharan Africa. This has detrimental effects to the people living in this region, and whose population is increasing more rapidly than their domestic food production. Noticeably, pressure on agricultural land has continued to intensify. Cassava is one of the staple crops with remarkable tolerance to drought. It is adapted to diverse and poor soil conditions, in addition to its flexibility in planting and harvesting times. Understanding its physiological and molecular basis of drought tolerance may help to target the key traits that limit crop yield under drought conditions. To improve our understanding on drought tolerance mechanisms in cassava, the project 'Identifying the physiological and genetic traits that make cassava one of the most drought-tolerant crops' was initiated in 2005 by the Brazilian Agricultural Research Corporation (Embrapa) in collaboration with the International Center for Tropical Agriculture (CIAT); the International Institute of Tropical Agriculture (IITA); Cornell University and University of Goettingen. The ultimate goal of the project was to identify morphological, physiological and molecular traits related to drought tolerance mechanisms in cassava for further progress, and for their application in cassava and other crop breeding programs. The present study was conducted within the framework of this project with 31 African cassava germplasm accessions from IITA and a mapping population developed at CIAT. The objectives of this study were, 1) To develop a protocol for hardening and rapid micro-propagation of cassava plantlets under local, low-cost conditions; 2) To identify agro-morphological attributes that are related to drought tolerance in cassava; 3) To identify drought-tolerant and drought-susceptible cassava germplasm from a selection of African accessions; 4) To identify secondary traits that could be used for phenotyping breeding materials for drought tolerance; 5) To screen the CIAT mapping population with simple sequence repeats (SSR) and expressed simple sequence repeat (ESSR) markers for linkage analysis. Thirty one putative drought-tolerant and drought-susceptible African cassava germplasm accessions from IITA were micro-propagated using direct and in-direct techniques, at Kenya Agricultural Research Institute (KARI), Nairobi, Kenya. In direct micro-propagation, plantlets were hardened using vermiculite and multiplied through nodal cuttings. In in-direct micro-propagation, plantlets were first multiplied through sub-culturing and later hardened. The direct micro-propagation method had a higher multiplication rate. The number of plantlets obtained in 7 months using the direct method were 1173 as compared to 722 attained using the in-direct micropropagation. Rapid micro-propagation through nodal cuttings was cheaper in terms of consumables and an effective alternative to enhance rates of multiplication, over the in-direct method and the more conventional technique like the use of stem cuttings. Agronomic and morphological evaluation of contrasting African cassava germplasm accessions was carried out in water-stressed and well-watered environments at 5 time points. The trial was conducted at the experimental field of KARI, Kiboko Research Station in Makindu, Eastern Kenya, a site characterized by Acri-orthic Ferralsol soil. Analysis of variance was performed using the agronomic and morphological data, and broad sense heritability was estimated. In general, significant differences were observed among the accessions, suggesting a strong genetic basis for the phenotypic variation observed. Variation was also notable in water-stressed and well-watered environments for a majority of traits evaluated. This was due to the artificial water applied since, during the trial period, there was hardly any rainfall. At harvest, leaf length and width of certain acc


Best Sellers



Product Details
  • ISBN-13: 9783869552606
  • Binding: Paperback
  • Language: English
  • Width: 231 mm
  • ISBN-10: 3869552603
  • Height: 210 mm
  • Weight: 9 gr

Related Categories

Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)
-
Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Towards Identifying the Physiological and Molecular Basis of Drought Tolerance in Cassava (Manihot esculenta Crantz)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!