Home > General > STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES
STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES

STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

In dieser Dissertation werden Methoden zur Segmentierung anatomischer Strukturen in Planungsbildernder Magnetresonanztomographie (MRT), sogenannten Localizer-Bildern, vorgestellt.Localizer sind schnelle MR-Scanprotokolle zur Untersuchungsplanung. Segmentierungenanatomischer Strukturen aus diesen Bildern konnen fur Anwendungen zur vollautomatischenUntersuchungsplanung, z.B. Organlokalisierungen, Schichtpositionierungen, Sequenzanpassungen,etc. verwendet werden. Da Localizer-Bilder nicht hinsichtlich Bildqualitatsondern hinsichtlich Messzeit und Abdeckung optimiert sind, sind modellbasierte statistischeVerfahren fur die Segmentierung vorteilhaft.Zwei Methoden werden Die erste ist eine Methode zur Rekonstruktion von Leberform,-position und -orientierung aus einer Serie von wenigen 2D-Planungsschichtbildernmit großem Schichtabstand. Dazu wird ein Active Shape Model aus manuellen Lebersegmentierungenvon 3D Trainingsbildern erstellt, das die durchschnittliche Leberform und die Hauptkomponentenseiner Varianz beschreibt. Korrespondierende Landmarkenpunkte auf der Oberflache werden durch Remeshing mit Hilfe konformer Abbildungen in der spharischen Domaneinitialisiert und verfeinert durch Optimierung eines Korrespondenzmaßes, welches auf MinimumDescription Length (MDL) basiert und die Kompaktheit des generierten statistischenModells beschreibt. Die Segmentierung der Leber aus den gestapelten 2D-Schichtbildern erfolgtdurch durch die Berechnung derjenigen Modellinstanz des Active Shape Models, welchebestmoglich die Bilddaten beschreibt. Man erreicht dies durch iterative Berechnung optimalerVerschiebungen der Landmarken. Die optimalen Verschiebungen beruhen auf Grauwertprofilenin den Bildern und einer normalisierten lokalen Statistik der Grauwertverteilungen in denTrainingsbildern. Die Instanz des Active Shape Models, die die gefundenen Verschiebungender Landmarken am besten reprasentiert, wird durch eine Projektion auf den Linearraum desActive Shape Models gefunden. Daraus erhalt man eine gultige Modellinstanz, die die Verschiebungender Landmarken bestmoglich beschreibt.Die Ergebnisse der Segmentierung aus generierten Localizer-Bildern werden mit den manuellenSegmentierungen mittels 4 Fehlermetriken verglichen. Die Ergebnisse zeigen, dass dieMethode gegenuber Lebersegmentierungen mittels Active Shape Models aus 3D Daten konkurrenzfahig ist, wenn auch mit geringerer Prazision aufgrund der geringeren Bildqualitat.Die zweite Methode, die in dieser Dissertation vorgestellt wird, ist ein automatisches, anatomischesLabeling oder eine Multiorgansegmentierung anatomischer Strukuturen in FastView-Bildern. FastView ist ein modernes MR-Protokoll, welches 3D Localizer-Bilder produziert, indem2D-Schichten wahrend kontinuierlichem Vorschub des Patiententisches gemessen werden.Die Segmentierung basiert auf einem statistischen Atlas des menschlichen Korpers, der aus einerGruppe reprasentativer FastView Datensatze gewonnen wird. Der Atlas enthalt einerseitsein statistisches Deformationsmodell, das verwendet werden kann, um unbekannte Datensatzeauf die durchschnittliche Korperform des Atlas zu verformen. Zusatzlich enthalt der Atlas einstatistisches Modell der Grauwertverteilungen, das verwendet werden kann, um gultige Atlasbilderzu erzeugen.


Best Sellers



Product Details
  • ISBN-13: 9783869554396
  • Binding: Paperback
  • Language: English
  • Width: 180 mm
  • ISBN-10: 3869554398
  • Height: 210 mm
  • Weight: 7 gr

Related Categories

Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES
-
STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

STATISTICAL MODELS FOR SEGMENTATION FROM MR LOCALIZER IMAGES

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!