Home > Science & Mathematics > Mathematics > Philosophy of mathematics > Schatztheoretische Analyse Neuronaler Codierungsstrategien
27%
Schatztheoretische Analyse Neuronaler Codierungsstrategien

Schatztheoretische Analyse Neuronaler Codierungsstrategien

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

This dissertation deals with the application of estimation theory to the analysis of neural codes. Neural systems that represent stimulus information presumably optimize their response characteristics by minimizing the error achievable when reconstructing the stimulus from the activity. By calculating this minimal reconstruction error either for theoretical models of neural encoding systems or from empirically measured activity, estimation theory serves to quantify the encoding accuracy achievable by a given coding scheme. Following an introduction of the basic concepts of classical estimation theory and a discussion of the ideas behind its application to neural coding, this thesis contains two worked-out examples that tackle major problems inThis dissertation deals with the application of estimation theory to the analysis of neural codes. Neural systems that represent stimulus information presumably optimize their response characteristics by minimizing the error achievable when reconstructing the stimulus from the activity. By calculating this minimal reconstruction error either for theoretical models of neural encoding systems or from empirically measured activity, estimation theory serves to quantify the encoding accuracy achievable by a given coding scheme. Following an introduction of the basic concepts of classical estimation theory and a discussion of the ideas behind its application to neural coding, this thesis contains two worked-out examples that tackle major problems in the corresponding areas of computational neuroscience. The first application involves a Fisher information analysis of the representational accuracy achieved by a population of stochastically spiking neurons that encode a stimulus with their spike counts during some fixed time interval. The obtained results lead to three main conclusions. First, the structure of neuronal noise can substantially modify the encoding properties of neural systems. In particular, the claim that limited-range correlations impose an upper limit on this capacity was shown to be correct only for the biologically implausible case of fixed-variance noise. This shows that choosing the correct neuronal noise model can be critical for theoretical analysis. Second, considerations on parameter variability lead to the hypothesis that the great variability observed empirically may not simply be a byproduct of neuronal diversity, but could be exploited by the neural system to achieve better encoding performance. Finally, it is demonstrated that neural populations can choose from a wide variety of strategies to optimize their tuning properties. Hence, the question of optimal tuning properties may not be reduced to a simple "broad or narrow"-dichotomy. Second, a linear reconstruction approach (the Wiener-Kolmogorov filter) was used to analyze coding strategies for time-varying stimuli. In an application to motion representation in H1-neurons, it turned out that, as shown above for static stimuli, the exact type of noise (e.g. Poissonian, additive, or multiplicative) is also important in the context of coding of dynamic stimuli. Moreover, it was shown that biphasic filters allow the best reconstruction if their time scale corresponds to the stimulus autocorrelation time, while the performance of single-phase filters always improves with decreasing time scale. A second application of the Wiener-Kolmogorov filter to a more sophisticated model of contrast coding in retinal activity suggested that non-linear contrast gain control does not improve the encoding of temporal contrast patterns in the normal physiological regime of retinal function. However, this example also demonstrated that the application of estimation theory to complex, real-world biological systems is not as straightforward as it may seem from purely theoretical studies. In conclusion, this thesis demonstrates that estimation theory provides a unified framework for the study of neural codes for both static and time-varying stimuli. In addition, it has successfully applied this framework to aspects of neural coding and derived results of general importance for our current picture of neural representation of stimulus information. It is hoped that this work is of value for both experimental and theoretical neuroscientists the corresponding areas of computational neuroscience. The first application involves a Fisher information analysis of the representational accuracy achieved by a population of stochastically spiking neurons that encode a stimulus with their spike counts during some fixed time interval. The obtained results lead to three main conclusions. First, the structure of neuronal noise can substantially modify the encoding properties of neural systems. In particular, the claim that limited-range correlations impose an upper limit on this capacity was shown to be correct only for the biologically implausible case of fixed-variance noise. This shows that choosing the correct neuronal noise model can be critical for theoretical analysis. Second, considerations on parameter variability lead to the hypothesis that the great variability observed empirically may not simply be a byproduct of neuronal diversity, but could be exploited by the neural system to achieve better encoding performance. Finally, it is demonstrated that neural populations can choose from a wide variety of strategies to optimize their tuning properties. Hence, the question of optimal tuning properties may not be reduced to a simple "broad or narrow"-dichotomy. Second, a linear reconstruction approach (the Wiener-Kolmogorov filter) was used to analyze coding strategies for time-varying stimuli. In an application to motion representation in H1-neurons, it turned out that, as shown above for static stimuli, the exact type of noise (e.g. Poissonian, additive, or multiplicative) is also important in the context of coding of dynamic stimuli. Moreover, it was shown that biphasic filters allow the best reconstruction if their time scale corresponds to the stimulus autocorrelation time, while the performance of single-phase filters always improves with decreasing time scale. A second application of the Wiener-Kolmogorov filter to a more sophisticated model of contrast coding in retinal activity suggested that non-linear contrast gain control does not improve the encoding of temporal contrast patterns in the normal physiological regime of retinal function. However, this example also demonstrated that the application of estimation theory to complex, real-world biological systems is not as straightforward as it may seem from purely theoretical studies. In conclusion, this thesis demonstrates that estimation theory provides a unified framework for the study of neural codes for both static and time-varying stimuli. In addition, it has successfully applied this framework to aspects of neural coding and derived results of general importance for our current picture of neural representation of stimulus information. It is hoped that this work is of value for both experimental and theoretical neuroscientists.


Best Sellers



Product Details
  • ISBN-13: 9783897227781
  • Publisher: Logos Verlag Berlin
  • Publisher Imprint: Logos Verlag Berlin
  • Height: 210 mm
  • No of Pages: 111
  • Series Title: German
  • Weight: 700 gr
  • ISBN-10: 3897227789
  • Publisher Date: 30 Oct 2001
  • Binding: Paperback
  • Language: German
  • Returnable: N
  • Spine Width: 0 mm
  • Width: 145 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Schatztheoretische Analyse Neuronaler Codierungsstrategien
Logos Verlag Berlin -
Schatztheoretische Analyse Neuronaler Codierungsstrategien
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Schatztheoretische Analyse Neuronaler Codierungsstrategien

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!