Recycled plastic biocomposites have attracted widespread attention from both researchers and manufacturers due to the significant improvements in their physico-mechanical, thermal, rheological, and barrier properties when compared to conventional materials, as well as their potential regarding commercialization and zero waste. Recycled Plastic Biocomposites presents the latest information on recycled polymers, textiles, pulp and paper, wood plastic, rubber waste plastic, and micro and nano effects of recycled plastic waste resources that have great potential as reinforcement materials in composites because they are non-toxic, inexpensive, biodegradable, cost-effective, and available in large amounts. Recycled plastic biocomposites are now starting to be deployed in a broad range of materials applications due to their advantages over petroleum-based materials. Currently, there are no limits to the possibility of their applications. They also have exceptional sustainable and biodegradable properties when compared to conventional materials such as polymers and composites.
Recycled Plastic Biocomposites reviews the latest research advances on recycled plastic-based biocomposites, including thermoplastic, thermoset, rubber, and foams. In addition, the book covers critical assessments on the economics of recycled plastic, including a cost-performance analysis that discusses its strengths and weaknesses as a reinforcement material. The huge potential applications of recycled plastic in industry are also explored in detail with respect to low cost, recyclable and biodegradable properties, and the way they can be applied to the automotive, construction, and packaging industries. The life cycles of both single and hybrid recycled plastic-based polymer composites and biocomposites are also discussed in detail. From the viewpoint of recycled plastic-based polymer composites, the book covers not only the well-known role of recycled polymers and composites, but also advanced materials produced from micro-, nano-, and pico-scale fillers that achieve better physical, mechanical, morphological, and thermal properties.
This book will be an essential reference resource for academic and industrial researchers, materials scientists, and those working in polymer science and engineering, chemical engineering, manufacturing, and biocomposites.