Home > Computer & Internet > Computer science > Artificial intelligence > Pattern recognition > Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow
8%
Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow

Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Have you always wanted to learn deep learning but are afraid it'll be too difficult for you? This book is for you.Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.Book DescriptionPython Machine Learning, is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems.Packed with clear explanations, visualizations, and working examples, the book covers most of the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, this tutorial book teaches the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow, skit-learn, Keras, and theano, this edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores analysis by giving some examples, helping you learn how to use machine learning algorithms to classify or predict documents output.This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn-Master the frameworks, models, and techniques that enable machines to 'learn' from data-Use scikit-learn for machine learning and TensorFlow for deep learning-Apply machine learning to classification, predict predict customer churning, and more-Build and train neural networks, GANs, CNN, and other models-Discover best practices for evaluating and tuning models-Predict target outcomes using optimization algorithm such as Gradient Descent algorithm analysis-Overcome challenges in deep learning algorithms by using dropout, regulation-Who This Book Is ForIf you know some Python and you want to use machine learning and deep learning, pick up this book. Whether you want to start from scratch or extend your machine learning knowledge, this is an essential resource. Written for developers and data scientists who want to create practical machine learning and deep learning code, this book is ideal for anyone who wants to teach computers how to learn from data.Table of Contents1.Giving Computers the Ability to Learn from Data2.Training Simple ML Algorithms for Classification3.ML Classifiers Using scikit-learn4.Building Good Training Datasets - Data Preprocessing5.Compressing Data via Dimensionality Reduction6.Best Practices for Model Evaluation and Hyperparameter Tuning7.Combining Different Models for Ensemble Learning8.Predicting Continuous Target Variables with supversized learning 9.Implementing Multilayer Artificial Neural Networks10.Modeling Sequential Data Using Recurrent Neural Networks11.GANs for Synthesizing New Data...and so much more....In every chapter, you can edit the examples online


Best Sellers



Product Details
  • ISBN-13: 9798650069102
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 229 mm
  • No of Pages: 52
  • Spine Width: 3 mm
  • Width: 152 mm
  • ISBN-10: 865006910X
  • Publisher Date: 31 May 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 91 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow
Independently Published -
Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python Machine Learning: Machine Learning and Deep Learning from Scratch Illustrated with Python, Scikit-Learn, Keras, Theano and Tensorflow

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!