Home > Computer & Internet > Computer programming / software development > Programming & scripting languages: general > Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn
6%
Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

2.6       |  5 Reviews 
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

A comprehensive guide to get you up to speed with the latest developments of practical machine learning with Python and upgrade your understanding of machine learning (ML) algorithms and techniques


Key Features

  • Dive into machine learning algorithms to solve the complex challenges faced by data scientists today
  • Explore cutting edge content reflecting deep learning and reinforcement learning developments
  • Use updated Python libraries such as TensorFlow, PyTorch, and scikit-learn to track machine learning projects end-to-end


Book Description

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML).


With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements.


At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries.


Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP.


By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.


What you will learn

  • Understand the important concepts in ML and data science
  • Use Python to explore the world of data mining and analytics
  • Scale up model training using varied data complexities with Apache Spark
  • Delve deep into text analysis and NLP using Python libraries such NLTK and Gensim
  • Select and build an ML model and evaluate and optimize its performance
  • Implement ML algorithms from scratch in Python, TensorFlow 2, PyTorch, and scikit-learn


Who this book is for

If you're a machine learning enthusiast, data analyst, or data engineer highly passionate about machine learning and want to begin working on machine learning assignments, this book is for you.


Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial, although this is not necessary.


Best Sellers



Product Details
  • ISBN-13: 9781800209718
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 526
  • Spine Width: 27 mm
  • Weight: 892 gr
  • ISBN-10: 1800209711
  • Publisher Date: 30 Oct 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

2.6       |  5 Reviews 
out of (%) reviewers recommend this product
Top Reviews
Rating Snapshot
Select a row below to filter reviews.
5
4
3
2
1
Average Customer Ratings
2.6       |  5 Reviews 
00 of 0 Reviews
Sort by :
Active Filters

00 of 0 Reviews
SEARCH RESULTS
1–2 of 2 Reviews
    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!

    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!


Sample text
Photo of
    Media Viewer

    Sample text
    Reviews
    Reader Type:
    BoxerLover2
    00 of 0 review

    Your review was submitted!
    Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn
    Packt Publishing -
    Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    Python Machine Learning by Example - Third Edition: Build intelligent systems using Python, TensorFlow 2, PyTorch, and scikit-learn

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book
      Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept

      New Arrivals



      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!