Home > Computer & Internet > Computer science > Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models
3%
Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models

Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Leverage the power of Python to build real-world feature engineering and machine learning pipelines ready to be deployed to production

Key Features:

- Craft powerful features from tabular, transactional, and time-series data

- Develop efficient and reproducible real-world feature engineering pipelines

- Optimize data transformation and save valuable time

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient.

This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python libraries.

You'll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data.

The book explores feature extraction from complex data types such as dates, times, and text. You'll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series.

By the end, you'll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance.

What You Will Learn:

- Discover multiple methods to impute missing data effectively

- Encode categorical variables while tackling high cardinality

- Find out how to properly transform, discretize, and scale your variables

- Automate feature extraction from date and time data

- Combine variables strategically to create new and powerful features

- Extract features from transactional data and time series

- Learn methods to extract meaningful features from text data

Who this book is for:

If you're a machine learning or data science enthusiast who wants to learn more about feature engineering, data preprocessing, and how to optimize these tasks, this book is for you. If you already know the basics of feature engineering and are looking to learn more advanced methods to craft powerful features, this book will help you. You should have basic knowledge of Python programming and machine learning to get started.

Table of Contents

- Imputing Missing Data

- Encoding Categorical Variables

- Transforming Numerical Variables

- Performing Variable Discretization

- Working with Outliers

- Extracting Features from Date and Time Variables

- Performing Feature Scaling

- Creating New Features

- Extracting Features from Relational Data with Featuretools

- Creating Features from a Time Series with tsfresh

- Extracting Features from Text Variables


Best Sellers



Product Details
  • ISBN-13: 9781835883587
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 396
  • Spine Width: 21 mm
  • Weight: 680 gr
  • ISBN-10: 1835883583
  • Publisher Date: 30 Aug 2024
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: A complete guide to crafting powerful features for your machine learning models
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models
Packt Publishing -
Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python Feature Engineering Cookbook - Third Edition: A complete guide to crafting powerful features for your machine learning models

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!