Home > Computer & Internet > Databases > Data warehousing > Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI
1%
Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Learn the intricacies of data description, issue identification, and practical problem-solving, armed with essential techniques and expert tips.

Key Features:

- Get to grips with new techniques for data preprocessing and cleaning for machine learning and NLP models

- Use new and updated AI tools and techniques for data cleaning tasks

- Clean, monitor, and validate large data volumes to diagnose problems using cutting-edge methodologies including Machine learning and AI

Book Description:

Jumping into data analysis without proper data cleaning will certainly lead to incorrect results. The Python Data Cleaning Cookbook will show you tools and techniques for cleaning and handling data with Python for better outcomes.

Fully updated to the latest version of Python and all relevant tools, this book will teach you how to manipulate and clean data to get it into a useful form. The current edition emphasizes advanced techniques like machine learning and AI-specific approaches and tools to data cleaning along with the conventional ones. The book also delves into tips and techniques to process and clean data for ML, AI and NLP models You will learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Next, you'll cover recipes for using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors and generate visualizations for exploratory data analysis (EDA) to identify unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data.

By the end of this Data Cleaning book, you'll know how to clean data and diagnose problems within it.

What You Will Learn:

- Using OpenAI tools for various data cleaning tasks

- Produce summaries of the attributes of datasets, columns, and rows

- Anticipating Data Cleaning Issues when Importing Tabular Data into Pandas

- Apply validation techniques for imported tabular data

- Improve your productivity in Python pandas by using method chaining

- Recognize and resolve common issues like dates and IDs

- Set up indexes to streamline data issue identification

- Use data cleaning to prepare your data for ML and AI models

Who this book is for:

This book is for anyone looking for ways to handle messy, duplicate, and poor data using different Python tools and techniques. The book takes a recipe-based approach to help you to learn how to clean and manage data with practical examples.

Working knowledge of Python programming is all you need to get the most out of the book.


Best Sellers



Product Details
  • ISBN-13: 9781803239873
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 486
  • Spine Width: 25 mm
  • Weight: 824 gr
  • ISBN-10: 1803239875
  • Publisher Date: 31 May 2024
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI
Packt Publishing -
Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Python Data Cleaning Cookbook - Second Edition: Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!