Home > Computer & Internet > Business applications > Mathematical & statistical software > Probabilistic Graphical Models: Principles and Applications
37%
Probabilistic Graphical Models: Principles and Applications

Probabilistic Graphical Models: Principles and Applications

5       |  1 Reviews 
5
4
3
2
1

Available


There is a newer edition of this item:

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Examines new material on partially observable Markov decision processes, and graphical models
  • Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models
  • Covers multidimensional Bayesian classifiers, relational graphical models, and causal models
  • Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects
  • Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks
  • Outlines the practical application of the different techniques
  • Suggests possible course outlines for instructors

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.

Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.


Best Sellers



Product Details
  • ISBN-13: 9781447170549
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: Softcover reprint of the original 1st ed. 2015
  • Language: English
  • Returnable: Y
  • Spine Width: 0 mm
  • Weight: 4791 gr
  • ISBN-10: 1447170547
  • Publisher Date: 09 Oct 2016
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 253
  • Series Title: Advances in Computer Vision and Pattern Recognition
  • Sub Title: Principles and Applications
  • Width: 155 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

5       |  1 Reviews 
out of (%) reviewers recommend this product
Top Reviews
Rating Snapshot
Select a row below to filter reviews.
5
4
3
2
1
Average Customer Ratings
5       |  1 Reviews 
00 of 0 Reviews
Sort by :
Active Filters

00 of 0 Reviews
SEARCH RESULTS
1–2 of 2 Reviews
    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!

    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!


Sample text
Photo of
    Media Viewer

    Sample text
    Reviews
    Reader Type:
    BoxerLover2
    00 of 0 review

    Your review was submitted!
    Probabilistic Graphical Models: Principles and Applications
    Springer -
    Probabilistic Graphical Models: Principles and Applications
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    Probabilistic Graphical Models: Principles and Applications

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book
      Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept

      New Arrivals



      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!