Home > Computer & Internet > Databases > Data mining > Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)
Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)

Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Explore the cosmic secrets of Distributed Processing for Deep Learning applications.

KEY FEATURES

●In-depth practical demonstration of ML/DL concepts using Distributed Framework.

● Covers graphical illustrations and visual explanations for ML/DL pipelines.

● Includes live codebase for each of NLP, computer vision and machine learning applications.

DESCRIPTION

This book provides the reader with an up-to-date explanation of Machine Learning and an in-depth, comprehensive, and straightforward understanding of the architectural techniques used to evaluate and anticipate the futuristic insights of data using Apache Spark.

The book walks readers by setting up Hadoop and Spark installations on-premises, Docker, and AWS. Readers will learn about Spark MLib and how to utilize it in supervised and unsupervised machine learning scenarios. With the help of Spark, some of the most prominent technologies, such as natural language processing and computer vision, are evaluated and demonstrated in a realistic setting. Using the capabilities of Apache Spark, this book discusses the fundamental components that underlie each of these natural language processing, computer vision, and machine learning technologies, as well as how you can incorporate these technologies into your business processes.

Towards the end of the book, readers will learn about several deep learning frameworks, such as TensorFlow and PyTorch. Readers will also learn to execute distributed processing of deep learning problems using the Spark programming language.

WHAT YOU WILL LEARN

● Learn how to get started with machine learning projects using Spark.

● Witness how to use Spark MLib's design for machine learning and deep learning operations.

● Use Spark in tasks involving NLP, unsupervised learning, and computer vision.

● Experiment with Spark in a cloud environment and with AI pipeline workflows.

● Run deep learning applications on a distributed network.


WHO THIS BOOK IS FOR

This book is valuable for data engineers, machine learning engineers, data scientists, data architects, business analysts, and technical consultants worldwide. It would be beneficial to have some familiarity with the fundamentals of Hadoop and Python.


Best Sellers



Product Details
  • ISBN-13: 9789391392130
  • Publisher: Draft2digital
  • Publisher Imprint: Bpb Publications
  • Height: 235 mm
  • No of Pages: 500
  • Spine Width: 26 mm
  • Weight: 852 gr
  • ISBN-10: 939139213X
  • Publisher Date: 17 Oct 2022
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)
Draft2digital -
Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Practical Machine Learning with Spark: Uncover Apache Spark's Scalable Performance with High-Quality Algorithms Across NLP, Computer Vision and ML (English Edition)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!