3%
Phase Space Methods for Degenerate Quantum Gases

Phase Space Methods for Degenerate Quantum Gases

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons.

The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable quantities such as quantum correlation functions are given as phase space integrals. Finally, the phase space variables are replaced by time dependent stochastic variables satisfying Langevin stochastic equations obtained from the Fokker-Planck equation, with stochastic averages giving the measurable quantities.

Second, a quantum field approach is treated, the density operator being represented by a distribution functional of field functions which replace field annihilation, creation operators, the distribution functional satisfying a functional FPE, etc. A novel feature of this book is that the phase space variables for fermions are Grassmann variables, not c-numbers. However, we show that Grassmann distribution functions and functionals still provide equations for obtaining both analytic and numerical solutions. The book includes the necessary mathematics for Grassmann calculus and functional calculus, and detailed derivations of key results are provided.

About the Author:
Bryan J. Dalton, Professor, Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, John Jeffers, Reader, Department of Physics, University of Strathclyde, Stephen M. Barnett, Professor of Quantum Optics, School of Physics and Astronomy, University of Glasgow

Bryan Dalton obtained a PhD degree in 1966 from Monash University. Following postdoctoral positions at University of Chicago and Australian National University, he joined the Department of Physics, University of Queensland in 1970, retiring as a Reader in 2000. His research was in theoretical quantum optics on topics such as non-classical states of light, coherent population trapping, laser-induced continuum structures, quantum beats, squeezed light spectroscopy and macroscopic cavity quantum electrodynamics. After 2000, he held research fellow positions at University of Sussex and Swinburne University of Technology, where he is currently an Adjunct Professor. He recently spent six months at University College, Cork as an ETS Walton Visiting Fellow. His more recent research interests have included decoherence effects in quantum computers, phase space theory in quantum and atom optics for Bose-Einstein condensates and Fermi gases, and entanglement theory for identical particle systems.

John Jeffers is a Reader in the Physics Department at the University of Strathclyde and has been a researcher in quantum optics for twenty years. He obtained his PhD in Theoretical Physics from the University of Essex in 1993. Since then his research interests have included quantum dielectrics, quantum imaging, retrodictive quantum theory, quantum communication, quantum optical amplification and degenerate quantum gases.

Stephen Barnett has been Professor of Quantum Optics since 1995, first at the University of Strathclyde and more recently at the University of Glasgow. He is best known for his discovery, with David Pegg, of the quantum phase operator, but he has wide-spread interests in quantum optics, quantum information, optics and, of course, cold-atom physics. His work has been recognised by the Royal Society, the Royal Society of Edinburgh and the Optical Society of America, all of which have elected him a Fellow. He was awarded the 2013 Dirac Medal and Prize for theoretical physics by the Institute of Physics.


Best Sellers



Product Details
  • ISBN-13: 9780199562749
  • Publisher: Oxford University Press, USA
  • Publisher Imprint: Oxford University Press, USA
  • Depth: 25
  • Language: English
  • Returnable: Y
  • Spine Width: 28 mm
  • Width: 246 mm
  • ISBN-10: 0199562741
  • Publisher Date: 20 Jan 2015
  • Binding: Hardback
  • Height: 178 mm
  • No of Pages: 432
  • Series Title: International Monographs on Physics
  • Weight: 861 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Phase Space Methods for Degenerate Quantum Gases
Oxford University Press, USA -
Phase Space Methods for Degenerate Quantum Gases
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Phase Space Methods for Degenerate Quantum Gases

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!