Home > Science & Mathematics > Physics > Applied physics > Biophysics > Organization of DNA in Chromatin
10%
Organization of DNA in Chromatin

Organization of DNA in Chromatin

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

As the DNA in our genome comprises about three billion base-pairs, with each base-pair separated by a third of a nanometer - its total length is about a meter - of all which residing within a compact form knows as chromatin. At first guess, one might think the DNA to be a wound up like a ball of yarn, but chromatin turns out to be a more complex structure, DNA being organized into hierarchical series of superhelices.

Counting the right-handed double-helix as the first stage in the hierarchical ordering, the second consists of 147 base-pairs wound around the outside of nucleosomes as a left-handed toroidal-superhelix containing one and three-quarter turns. Each nucleosome contains two pairs each of four different histones, small positively charged basic proteins called H2A, H2B, H3 and H4 spatially related by two-fold symmetry. Adjacent nucleosomes remain connected together by linker DNA, additional DNA (variable in length, but generally between 5- to 60 base-pairs) that exists between nucleosomes, resulting in the formation of an extended 100 Angstrom fiber.

In the presence of an additional histone (H1), DNA is known to undergo a still higher level of compaction, organizing itself into a solenoidal super helical structure having a diameter of about 300 Angstroms. This 300 Angstrom fiber can readily be seen by electron microscopy and, almost certainly, the unraveling of its structure foreshadows still further complex structural features of chromatin to be discovered in future years.

In order for DNA to be organized into this hierarchical series of superhelices, there must be a source of flexibility in DNA structure that allows this to happen.

Earlier, the author put forward a kinked model to understand how DNA is organized within the nucleosome. The model assumed nucleosome DNA to be in its B- form, separated by 'mixed-puckered kinks' every 10 base-pairs. Ink this book, he presents a modification to this model; this being necessary to explain important additional experimental information uncovered several years after the model was proposed. The modified model proposed that if there were an equal probability of both 10 base-pars of B- DNA or 11 base-pairs of A- DNA existing within any given segment of the left-handed toroidal super helical structure - these being connected together by 'mixed-puckered kinks' - then a population of such aperiodic structures can be expected to give rise to the periodic cutting-patterns observed experimentally. This would be true for naked DNA molecules immobilized on a calcium-phosphate crystalline surface as well, provided they also formed left-handed toroidal superhelices under these conditions.

In both cases, probability considerations predict cutting patters to be symmetrically distributed around integral multiples of 10.5 base-pairs along DNA, the relative magnitudes of the surroundings peaks in these patterns being governed by the binomial distribution - the proof of which is presented in this book.



Best Sellers



Product Details
  • ISBN-13: 9798886151138
  • Publisher: Inks and Bindings, LLC
  • Publisher Imprint: Inks and Bindings, LLC
  • Height: 279 mm
  • No of Pages: 20
  • Spine Width: 6 mm
  • Width: 216 mm
  • ISBN-10: 8886151136
  • Publisher Date: 31 Jan 2023
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 367 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Organization of DNA in Chromatin
Inks and Bindings, LLC -
Organization of DNA in Chromatin
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Organization of DNA in Chromatin

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!