Home > General > MLOps Engineering at Scale
32%
MLOps Engineering at Scale

MLOps Engineering at Scale

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers. Cloud Native Machine Learning helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system. what's inside

    Extracting, transforming, and loading datasets Querying datasets with SQL Understanding automatic differentiation in PyTorch Deploying trained models and pipelines as a service endpoint Monitoring and managing your pipeline's life cycle Measuring performance improvements
about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world's foremost experts in machine learning and also helped manage the company's efforts to democratize artificial intelligence. You can learn more about Carl from his blog Clouds With Carl.


Best Sellers



Product Details
  • ISBN-13: 9781617297762
  • Publisher: Manning Publications
  • Publisher Imprint: Manning Publications
  • Height: 187 mm
  • No of Pages: 250
  • Spine Width: 24 mm
  • Width: 234 mm
  • ISBN-10: 1617297763
  • Publisher Date: 29 Jun 2021
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 628 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
MLOps Engineering at Scale
Manning Publications -
MLOps Engineering at Scale
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

MLOps Engineering at Scale

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!