Home > Business & Economics > Business & management > Sales & marketing > Public relations > Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference
11%
Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference

Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Chapter TwoWhat is (AI) deep learning techniques to forecast environment behavioral consumptionThe (AI) deep-learning technology leads to performance enhancement and generalization of artificial intelligent technology. It influences the global leader in the field of information technology has declared its intention to utilize the deep-learning technology to solve environmental problems, such as climate change. So, it will help agriculture farming businesses can raise any plant food: vegetable, fruit, rice which grow up very easily if farmers can apply (AI) deep-learning technology to solve environment problems to influence their plant food grow. If the whole year seasonal change is very good and it is suitable for any plant food to grow in farming land easily, e.g. rain is enough and soil is enough for any plant food to grow in the farm lands. Then, fruit, rice, vegetable etc. agriculture businesses will have much beneficial attribution to global farmers. The question is how to use deep-learning technologies in the environmental field to predict the status of pro-environmental consumption. We predicted the pro-environmental consumption index based on Google search query data, using a recurrent neural network ( RNN model). To certify the accuracy of the index, we compared the prediction accuracy of the RNN model with that of the ordinary least square and artificial necessary network models. For example, the RNN model predicts the pro-environmental consumption index better than any other model. we expect the RNN model to perform still better in a big data environment because the deep-learning technologies would be increasingly as the volume of data grows. So, deep-learning technologies could be useful in environmental forecasting to prevent damage caused by climate change to influence any rice, vegetable, tomato, potato, fruit etc. different plant food grow in any countries' farming land easily.For South Korea example, over 800 government agencies spent 2.2 trillion Korea won on eco-products in 2014 year. However, green products are rarely purchased outside these agencies. This phenomenon occurs because there is a gap between consumer attitudes and behavior, that is environmental attitude is a major factor in decision making vis-a-vis the consumption of " green" food and services ( Jorea Ministry of Environment, 2015). Therefore, it is necessary to understand those consumer attitude, that will lead to sustainability-conductive behavior and consumption.2.1Environmental consumption predictionRecently, many researchers have studied pro-environmental consumption and household indexes as well as suicide rate predictions using messages posted by internet users on Google trend, Tweets etc. channel. Whether can environmental consumption be predicted by (AI) deep-learning technological internet channel? How can impact the pro-environmental consumption attitudes of green policies? Korea scientists estimated pro-environmental attitudes using search query data provided by Google trend and confirmed through regression analysis, that pro-environmental attitude has a positive correlation with the pro-environmental attitude index. They also explained that environment-friendly attitude of residents plan an important role in policy making. In the past, most household consumption indexed were calculated through surveys, but (AI) deep-learning technological tool " big data" have recently gained research attention ( Lee et al. 2016).


Best Sellers



Product Details
  • ISBN-13: 9781793850904
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 279 mm
  • No of Pages: 254
  • Spine Width: 17 mm
  • Width: 216 mm
  • ISBN-10: 1793850909
  • Publisher Date: 10 Jan 2019
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 824 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference
Independently Published -
Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Marketing Information Prediction and Artificial Intelligence: Customer Psychological Prediction Difference

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!