Home > Computer & Internet > Computer science > Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI
Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWS

Purchase of the print or Kindle book includes a free PDF eBook

Key Features
  • Go in-depth into the ML lifecycle, from ideation and data management to deployment and scaling
  • Apply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutions
  • Understand the generative AI lifecycle, its core technologies, and implementation risks
Book Description

David Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills.

You'll learn about ML algorithms, cloud infrastructure, system design, MLOps, and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You'll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI.

By the end of this book, you'll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You'll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.

What you will learn
  • Apply ML methodologies to solve business problems across industries
  • Design a practical enterprise ML platform architecture
  • Gain an understanding of AI risk management frameworks and techniques
  • Build an end-to-end data management architecture using AWS
  • Train large-scale ML models and optimize model inference latency
  • Create a business application using artificial intelligence services and custom models
  • Dive into generative AI with use cases, architecture patterns, and RAG
Who this book is for

This book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.

Table of Contents
  1. Navigating the ML Lifecycle with ML Solutions Architecture
  2. Exploring ML Business Use Cases
  3. Exploring ML Algorithms
  4. Data Management for ML
  5. Exploring Open-Source ML Libraries
  6. Kubernetes Container Orchestration Infrastructure Management
  7. Open-Source ML Platforms
  8. Building a Data Science Environment using AWS ML Services
  9. Designing an Enterprise ML Architecture with AWS ML Services
  10. Advanced ML Engineering
  11. Building ML Solutions with AWS AI Services
  12. AI Risk Management
  13. Bias, Explainability, Privacy, and Adversarial Attacks

(N.B. Please use the Read Sample option to see further chapters)


Best Sellers



Product Details
  • ISBN-13: 9781805122500
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 602
  • Spine Width: 31 mm
  • Weight: 1019 gr
  • ISBN-10: 1805122509
  • Publisher Date: 15 Apr 2024
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI
Packt Publishing -
Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning Solutions Architect Handbook - Second Edition: Practical strategies and best practices on the ML lifecycle, system design, MLOps, and generative AI

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!