13%
Instabilities in Falling Liquid Films

Instabilities in Falling Liquid Films

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

The flows of thin film form the core of a large number of scientific, technological, and engineering applications. The occurrence of such flows can be observed in nature, for example on the windshield of vehicles in rainy weather. Thin film flows are also found in various engineering, geophysical, and biophysical ap- plications. Specific examples are nanofluidics, microfluidics, coating flows, intensive processing, tear-film rupture, lava flows, and dynamics of continental ice sheets. Important industrial applications of thin films include nuclear fusion research - for cooling the chamber walls surrounding the plasma, complex coating flows - where a thin film adheres to a moving substrate, distillation units, condensers, and heat exchangers, microfluidics, geophysical settings, such as gravity currents, mud, granular and debris flows, snow avalanches, ice sheet models, lava flows, biological and biophysical scenarios, such as flexible tubes, tear-film flows and many more.

The dynamics of such films are quite complex and display rich behavior and this attracted many mathematicians, physicists, and engineers to the field. In the past three decades, the work in the area has progressed a lot with considerable stress on revealing the stability and dynamics of the film where the flow is driven by various forces such as gravity, capillarity, thermocapillarity, centrifugation, and inter- molecular. The flow may happen over structured or smooth and impermeable or slippery surfaces. The investigation approaches include modeling and analytical work, numerical simulations, and performing experiments to explain the instabilities that the film can exhibit.

Direct analysis of the equations of the model of the interfacial flows is a very complicated mathematical exercise due to the existence of a free, evolving interface that bounds the liquid film. The mathematical complexity emerges from a number of things: (a) The Navier-Stokes (or Stokes or Euler) equations need to be solved in changing domains; (b) In certain applications one has to solve for the temperature or electrostatic or electromagnetic fields apart from the fluid equations; (c) Several nonlinear boundary conditions should be specified at the unknown interface(s) and (d) The solutions may not exist for all times. In fact in thin film problems, one may encounter finite-time singularities accompanied by topological transitions. The breakup of liquid jets is an example of that. However, in the subsequent chapters, we shall see that it is possible to use the different length scales appearing in thin film flows to our advantage. Thin films are characterized by much smaller length scales in the vertical direction as compared to those in the stream-wise direction. This gives rise to a small aspect ratio which makes the problem amenable for small amplitude perturbation expansions.


Best Sellers



Product Details
  • ISBN-13: 9781835800652
  • Publisher: Draft2digital
  • Publisher Imprint: Mohammed Abdul Sattar
  • Height: 279 mm
  • No of Pages: 144
  • Spine Width: 8 mm
  • Width: 216 mm
  • ISBN-10: 1835800653
  • Publisher Date: 21 Nov 2023
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 350 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Instabilities in Falling Liquid Films
Draft2digital -
Instabilities in Falling Liquid Films
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Instabilities in Falling Liquid Films

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!