Home > Science & Mathematics > Physics > Classical mechanics > Fluid mechanics > Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows
37%
Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows

Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Back Cover Text:

This book addresses the study of the gaseous state of granular matter in the conditions of rapid flow caused by a violent and sustained excitation. In this regime, grains only touch each other during collisions and hence, kinetic theory is a very useful tool to study granular flows. The main difference with respect to ordinary or molecular fluids is that grains are macroscopic and so, their collisions are inelastic. Given the interest in the effects of collisional dissipation on granular media under rapid flow conditions, the emphasis of this book is on an idealized model (smooth inelastic hard spheres) that isolates this effect from other important properties of granular systems. In this simple model, the inelasticity of collisions is only accounted for by a (positive) constant coefficient of normal restitution.

The author of this monograph uses a kinetic theory description (which can be considered as a mesoscopic description between statistical mechanics and hydrodynamics) to study granular flows from a microscopic point of view. In particular, the inelastic version of the Boltzmann and Enskog kinetic equations is the starting point of the analysis. Conventional methods such as Chapman-Enskog expansion, Grad's moment method and/or kinetic models are generalized to dissipative systems to get the forms of the transport coefficients and hydrodynamics. The knowledge of granular hydrodynamics opens up the possibility of understanding interesting problems such as the spontaneous formation of density clusters and velocity vortices in freely cooling flows and/or the lack of energy equipartition in granular mixtures.

Some of the topics covered in this monograph include:

  • Navier-Stokes transport coefficients for granular gases at moderate densities
  • Long-wavelength instability in freely cooling flows
  • Non-Newtonian transport properties in granular shear flows
  • Energynonequipartition in freely cooling granular mixtures
  • Diffusion in strongly sheared granular mixtures
  • Exact solutions to the Boltzmann equation for inelastic Maxwell models


    Best Sellers



    Product Details
    • ISBN-13: 9783030044435
    • Publisher: Springer
    • Publisher Imprint: Springer
    • Height: 234 mm
    • No of Pages: 394
    • Series Title: Soft and Biological Matter
    • Sub Title: A Kinetic Theory Approach to Granular Gaseous Flows
    • Width: 156 mm
    • ISBN-10: 3030044432
    • Publisher Date: 26 Mar 2019
    • Binding: Hardback
    • Language: English
    • Returnable: Y
    • Spine Width: 24 mm
    • Weight: 775 gr


    Similar Products

    How would you rate your experience shopping for books on Bookswagon?

    Add Photo
    Add Photo

    Customer Reviews

    REVIEWS           
    Click Here To Be The First to Review this Product
    Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows
    Springer -
    Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book
      Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept

      New Arrivals



      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!