The physics of non-equilibrium many-body systems is a rapidly expanding area of theoretical physics. Traditionally employed in laser physics and superconducting kinetics, these techniques have more recently found applications in the dynamics of cold atomic gases, mesoscopic and nano-mechanical systems, and quantum computation. This book provides a detailed presentation of modern non-equilibrium field-theoretical methods, applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. A highly pedagogical and self-contained approach is adopted within the text, making it ideal as a reference for graduate students and researchers in condensed matter physics. In this Second Edition, the text has been substantially updated to include recent developments in the field such as driven-dissipative quantum systems, kinetics of fermions with Berry curvature, and Floquet kinetics of periodically driven systems, among many other important new topics. Problems have been added throughout, structured as compact guided research projects that encourage independent exploration.