Home > Computer & Internet > Computer science > Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3
6%
Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3

Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3

2.7       |  3 Reviews 
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale


Key Features:

  • Discover how to convert huge amounts of raw data into meaningful and actionable insights
  • Use Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analytics
  • Perform data ingestion, cleansing, and integration for ML, data analytics, and data visualization


Book Description:

Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework.

Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that enable you to gain insights much faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability and performance to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas.

By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems.


What You Will Learn:

  • Understand the role of distributed computing in the world of big data
  • Gain an appreciation for Apache Spark as the de facto go-to for big data processing
  • Scale out your data analytics process using Apache Spark
  • Build data pipelines using data lakes, and perform data visualization with PySpark and Spark SQL
  • Leverage the cloud to build truly scalable and real-time data analytics applications
  • Explore the applications of data science and scalable machine learning with PySpark
  • Integrate your clean and curated data with BI and SQL analysis tools


Who this book is for:

This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.


Best Sellers



Product Details
  • ISBN-13: 9781800568877
  • Publisher: Packt Publishing Limited
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: A beginner's guide to harnessing the power and ease of PySpark 3
  • Width: 191 mm
  • ISBN-10: 1800568878
  • Publisher Date: 29 Oct 2021
  • Height: 235 mm
  • No of Pages: 322
  • Spine Width: 17 mm
  • Weight: 553 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

2.7       |  3 Reviews 
out of (%) reviewers recommend this product
Top Reviews
Rating Snapshot
Select a row below to filter reviews.
5
4
3
2
1
Average Customer Ratings
2.7       |  3 Reviews 
00 of 0 Reviews
Sort by :
Active Filters

00 of 0 Reviews
SEARCH RESULTS
1–2 of 2 Reviews
    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!

    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!


Sample text
Photo of
    Media Viewer

    Sample text
    Reviews
    Reader Type:
    BoxerLover2
    00 of 0 review

    Your review was submitted!
    Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3
    Packt Publishing Limited -
    Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    Essential PySpark for Scalable Data Analytics: A beginner's guide to harnessing the power and ease of PySpark 3

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book
      Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept

      New Arrivals



      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!