Home > Technology & Engineering > Technology: general issues > Engineering: general > Dynamic Optimization of Path-Constrained Switched Systems
37%
Dynamic Optimization of Path-Constrained Switched Systems

Dynamic Optimization of Path-Constrained Switched Systems

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

This book provides a series of systematic theoretical results and numerical solution algorithms for dynamic optimization problems of switched systems within infinite-dimensional inequality path constraints. Dynamic optimization of path-constrained switched systems is a challenging task due to the complexity from seeking the best combinatorial optimization among the system input, switch times and switching sequences. Meanwhile, to ensure safety and guarantee product quality, path constraints are required to be rigorously satisfied (i.e., at an infinite number of time points) within a finite number of iterations. Several novel methodologies are presented by using dynamic optimization and semi-infinite programming techniques. The core advantages of our new approaches lie in two folds: i) The system input, switch times and the switching sequence can be optimized simultaneously. ii) The proposed algorithms terminate within finite iterations while coming with a certification of feasibility for the path constraints. In this book, first, we provide brief surveys on dynamic optimization of path-constrained systems and switched systems. For switched systems with a fixed switching sequence, we propose a bi-level algorithm, in which the input is optimized at the inner level, and the switch times are updated at the outer level by using the gradient information of the optimal value function calculated at the optimal input. We then propose an efficient single-level algorithm by optimizing the input and switch times simultaneously, which greatly reduces the number of nonlinear programs and the computational burden. For switched systems with free switching sequences, we propose a solution framework for dynamic optimization of path-constrained switched systems by employing the variant 2 of generalized Benders decomposition technique. In this framework, we adopt two different system formulations in the primal and master problem construction and explicitly characterize the switching sequences by introducing a binary variable. Finally, we propose a multi-objective dynamic optimization algorithm for locating approximated local Pareto solutions and quantitatively analyze the approximation optimality of the obtained solutions. This book provides a unified framework of dynamic optimization of path-constrained switched systems. It can therefore serve as a useful book for researchers and graduate students who are interested in knowing the state of the art of dynamic optimization of switched systems, as well as recent advances in path-constrained optimization problems. It is a useful source of up-to-date optimization methods and algorithms for researchers who study switched systems and graduate students of control theory and control engineering. In addition, it is also a useful source for engineers who work in the control and optimization fields such as robotics, chemical engineering and industrial processes.


Best Sellers



Product Details
  • ISBN-13: 9783031234279
  • Publisher: Springer Nature Switzerland
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 106
  • Spine Width: 8 mm
  • Width: 156 mm
  • ISBN-10: 3031234278
  • Publisher Date: 08 Feb 2023
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 341 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Dynamic Optimization of Path-Constrained Switched Systems
Springer Nature Switzerland -
Dynamic Optimization of Path-Constrained Switched Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dynamic Optimization of Path-Constrained Switched Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!