Home > Technology & Engineering > Biochemical engineering > Development of Data Driven Models for Chemical Engineering Systems
1%
Development of Data Driven Models for Chemical Engineering Systems

Development of Data Driven Models for Chemical Engineering Systems

          
5
4
3
2
1

Out of Stock


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Notify me when this book is in stock
Add to Wishlist

About the Book

Modeling of any system or a process is one of the significant but challenging tasks in engineering. The challenge is either due to the physical complexity of natural phenomenon or our limited knowledge of mathematics. Recently, data driven modeling (DDM) has been found to be a very powerful tool in helping to overcome those challenges, by presenting opportunities to build basic models from the observed patterns as well as accelerating the response of decision makers in facing real world problems. Since DDM is able to map causal factors and consequent outcomes from the observed patterns (experimental data), without deep knowledge of the complex physical process, these modeling techniques are becoming popular among engineers. Soft computing and statistical models are the two commonly employed data-driven models for predictive modeling. As far as the statistical data-driven models are concerned, these models could be employed in the life of modern engineering. But the accuracy and generalizability of these models is very poor. The soft computing data- driven modeling techniques have attracted the attention of many researchers across the globe to overcome the limitations of statistical methods. The statistical data-driven modeling techniques such as least-squares methods, the maximum likelihood methods and traditional artificial neural network (ANN) are based on empirical risk minimization (ERM) principle while the support vector machine (SVM) method is based on the structural risk minimization (SRM) principle. According to it, the generalization accuracy is optimized over the empirical error and the flatness of the regression function or the capacity of SVM. On the other hand, the ANN and other traditional regression models which are based on ERM principle minimize the empirical error and do not consider the capacity of the learning machines. This results in model over fitting i.e. high prediction accuracy for the training data set and low for the test (unseen) data, giving poor generalization performance. SVMs belong to the supervised machine learning theory and are applied to both nonlinear classification called support vector classification (SVC) and regression or SVR. SVM possesses many advantages over traditional neural networks.


Best Sellers



Product Details
  • ISBN-13: 9798224869022
  • Publisher: Draft2digital
  • Publisher Imprint: Mohammed Abdul Malik
  • Height: 279 mm
  • No of Pages: 222
  • Spine Width: 12 mm
  • Width: 216 mm
  • ISBN-10: 8224869024
  • Publisher Date: 04 Mar 2024
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Weight: 525 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Development of Data Driven Models for Chemical Engineering Systems
Draft2digital -
Development of Data Driven Models for Chemical Engineering Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Development of Data Driven Models for Chemical Engineering Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!