Home > Computer & Internet > Computer science > Artificial intelligence > Neural networks & fuzzy systems > Deep Learning: Practical Neural Networks with Java
2%
Deep Learning: Practical Neural Networks with Java

Deep Learning: Practical Neural Networks with Java

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Build and run intelligent applications by leveraging key Java machine learning libraries About This Book * Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. * Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications * This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn * Get a practical deep dive into machine learning and deep learning algorithms * Explore neural networks using some of the most popular Deep Learning frameworks * Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms * Apply machine learning to fraud, anomaly, and outlier detection * Experiment with deep learning concepts, algorithms, and the toolbox for deep learning * Select and split data sets into training, test, and validation, and explore validation strategies * Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: 1. Java Deep Learning Essentials 2. Machine Learning in Java 3. Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, youll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application

About the Author

Yusuke Sugomori is a creative technologist with a background in information engineering. When he was a graduate school student, he cofounded Gunosy with his colleagues, which uses machine learning and web-based data mining to determine individual users respective interests and provides an optimized selection of daily news items based on those interests. This algorithm-based app has gained a lot ofattention since its release and now has more than 10 million users. The company has been listed on the Tokyo Stock Exchange since April 28, 2015. In 2013, Sugomori joined Dentsu, the largest advertising company in Japan based on nonconsolidated gross profit in 2014, where he carried out a wide variety of digital advertising, smartphone app development, and big data analysis. He was also featured as one of eight new generation creators by the Japanese magazine Web Designing. In April 2016, he joined a medical start-up as cofounder and CTO. Bostjan Kaluza, PhD, is a researcher in artificial intelligence and machine learning. Bostjan is the chief data scientist at Evolven, a leading IT operations analytics company, focusing on configuration and change management. He works with machine learning, predictive analytics, pattern mining, and anomaly detection to turn data into understandable relevant information and actionable insight.Prior to Evolven, Bostjan served as a senior researcher in the department of intelligent systems at the Jozef Stefan Institute, a leading Slovenian scientific research institution, and led research projects involving pattern and anomaly detection, ubiquitous computing, and multi-agent systems. Bostjan was also a visiting researcher at the University of Southern California, where he studied suspicious and anomalous agent behavior in the context of security applications. Bostjan has extensive experience in Java and Python, and he also lectures on Weka in the classroom.Focusing on machine learning and data science, Bostjan has published numerous articles in professional journals, delivered conference papers, and authored or contributed to a number of patents. In 2013, Bostjan published his first book on data science, Instant Weka How-to, Packt Publishing, exploring how to leverage machine learning using Weka. Learn more about him at http://bostjankaluza.net. Fabio M. Soares is currently a PhD candidate at the Federal University of Para (Universidade Federal do Para - UFPA), in northern Brazil. He is very passionate about technology in almost all fields, and designs neural network solutions since 2004 and has applied this technique in several fields like telecommunications, industrial process control and modeling, hydroelectric power generation, financial applications, retail customer analysis and so on. His research topics cover supervised learning for data-driven modeling. As of 2017, he is currently carrying on research projects with chemical process modeling and control in the aluminum smelting and ferronickel processing industries, and has worked as a lecturer teaching subjects involving computer programming and artificial intelligence paradigms. As an active researcher, he has also a number of articles published in English language in many conferences and journals, including four book chapters. Alan M. F. Souza is computer engineer from Instituto de Estudos Superiores da Amazonia (IESAM). He holds a post-graduate degree in project management software and a masters degree in industrial processes (applied computing) from Universidade Federal do Para (UFPA). He has been working with neural networks since 2009 and has worked with Brazilian IT companies developing in Java, PHP, SQL, and other programming languages since 2006. He is passionate about programming and computational intelligence. Currently, he is a professor at Universidade da Amazonia (UNAMA) and a PhD candidate at UFPA.


Best Sellers



Product Details
  • ISBN-13: 9781788470315
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 744
  • Spine Width: 38 mm
  • Weight: 1255 gr
  • ISBN-10: 1788470311
  • Publisher Date: 14 Jun 2017
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Practical Neural Networks with Java
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Deep Learning: Practical Neural Networks with Java
Packt Publishing -
Deep Learning: Practical Neural Networks with Java
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning: Practical Neural Networks with Java

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!