I believe The Craft of System Security is one of the best software security books on the market today. It has not only breadth, but depth, covering topics ranging from cryptography, networking, and operating systems--to the Web, computer-human interaction, and how to improve the security of software systems by improving hardware. Bottom line, this book should be required reading for all who plan to call themselves security practitioners, and an invaluable part of every university's computer science curriculum.
--Edward Bonver, CISSP, Senior Software QA Engineer, Product Security, Symantec Corporation
Here's to a fun, exciting read: a unique book chock-full of practical examples of the uses and the misuses of computer security. I expect that it will motivate a good number of college students to want to learn more about the field, at the same time that it will satisfy the more experienced professional.
--L. Felipe Perrone, Department of Computer Science, Bucknell University
Whether you're a security practitioner, developer, manager, or administrator, this book will give you the deep understanding necessary to meet today's security challenges--and anticipate tomorrow's. Unlike most books, The Craft of System Security doesn't just review the modern security practitioner's toolkit: It explains why each tool exists, and discusses how to use it to solve real problems.
After quickly reviewing the history of computer security, the authors move on to discuss the modern landscape, showing how security challenges and responses have evolved, and offering a coherent framework for understanding today's systems and vulnerabilities. Next, they systematically introduce the basic building blocks for securing contemporary systems, apply those building blocks to today's applications, and consider important emerging trends such as hardware-based security.
After reading this book, you will be able to
- Understand the classic Orange Book approach to security, and its limitations
- Use operating system security tools and structures--with examples from Windows, Linux, BSD, and Solaris
- Learn how networking, the Web, and wireless technologies affect security
- Identify software security defects, from buffer overflows to development process flaws
- Understand cryptographic primitives and their use in secure systems
- Use best practice techniques for authenticating people and computer systems in diverse settings
- Use validation, standards, and testing to enhance confidence in a system's security
- Discover the security, privacy, and trust issues arising from desktop productivity tools
- Understand digital rights management, watermarking, information hiding, and policy expression
- Learn principles of human-computer interaction (HCI) design for improved security
- Understand the potential of emerging work in hardware-based security and trusted computing
About the Author: Professor Sean Smith has been working in information security--attacks and defenses, for industry and government--since before there was a Web. As a post-doc and staff member at Los Alamos National Laboratory, he performed security reviews, designs, analyses, and briefings for a wide variety of public-sector clients; at IBM T.J. Watson Research Center, he designed the security architecture for (and helped code and test) the IBM 4758 secure coprocessor, and then led the formal modeling and verification work that earned it the world's first FIPS 140-1 Level 4 security validation. In July 2000, Sean left IBM for Dartmouth, since he was convinced that the academic education and research environment is a better venue for changing the world. His current work, as PI of the Dartmouth PKI/Trust Lab, investigates how to build trustworthy systems in the real world. Sean was educated at Princeton (A.B., Math) and CMU (M.S., Ph.D., Computer Science), and is a member of Phi Beta Kappa and Sigma Xi.
Dr. John Marchesini received a B.S. in Computer Science from the University of Houston in 1999 and, after spending some time developing security software for BindView, headed to Dartmouth to pursue a Ph.D. There, he worked under Professor Sean Smith in the PKI/Trust lab designing, building, and breaking systems. John received his Ph.D. in Computer Science from Dartmouth in 2005 and returned to BindView, this time working in BindView's RAZOR security research group. He conducted numerous application penetration tests and worked closely with architects and developers to design and build secure systems. In 2006, BindView was acquired by Symantec and he became a member of Symantec's Product Security Group, where his role remained largely unchanged. John recently left Symantec and is now the Principal Security Architect at EminentWare LLC.