Home > Computer & Internet > Computer science > Adaptive Internal Models for Motor Control and Visual Prediction
Adaptive Internal Models for Motor Control and Visual Prediction

Adaptive Internal Models for Motor Control and Visual Prediction

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Add to Wishlist

About the Book

In this thesis, computational models of adaptive motor control and visuomotor coordination are explored and developed. These models relate to hypotheses on how sensorimotor processing in biological organisms might be organized at an abstract level; furthermore, these models and their specific implementations offer solutions for technical problems in the domain of adaptive robotics. For this reason, both biological and technical aspects are addressed. On the one hand, this thesis focuses on the learning of so-called internal models (Miall et al., 1993; Kawato, 1999): "forward models", which predict the sensory consequences of the agent's own actions, and "inverse models", which act like motor controllers and generate motor commands. In this area, new strategies and algorithms for learning are suggested and tested on both simulated and real-world robot setups. This work contributes to the understanding of the "building blocks" of integrated sensorimotor processing. On the other hand, this thesis suggests complex models of sensorimotor coordination: In a study on the grasping to extrafoveal targets with a robot arm, it is explored how forward and inverse models may interact, and a second study addresses the question how visual perception of space might arise from the learning of sensorimotor relationships. The theoretical part of the thesis starts with a close view on sensorimotor processing. The cognitivist approach and the embodied approach to sensorimotor processing are contrasted with each other, providing evidence from psychological and neurophysiological studies in favor of the latter. It is outlined how the application of robots fits into the embodied approach as research method. Furthermore, internal models are defined in a formal way, and an overview of their role in models of perception and cognition is provided, with a special emphasis on anticipation and predictive forward models. Afterwards, a thorough overview of internal models in adaptive motor control (covering both kinematics and dynamics) and a novel learning strategy for kinematic control problems ("learning by averaging") are presented. The experimental work comprises four different studies. First, a detailed comparison study of various motor learning strategies for kinematic problems is presented. The performance of "feedback error learning" (Kawato et al., 1987), "distal supervised learning" (Jordan and Rumelhart, 1992), and "direct inverse modeling" (e.g., Kuperstein, 1987) is directly compared on several learning tasks from the domain of eye and arm control (on simulated setups). Moreover, an improved version of direct inverse modeling on the basis of abstract recurrent networks and learning by averaging are included in the comparison. The second study is dedicated to the learning of a visual forward model for a robot camera head. This forward model predicts the visual consequences of camera movements for all pixels of the camera image. The presented learning algorithm is able to overcome the two main difficulties of visual prediction: first, the high dimensionality of the input and output space, and second, the need to detect which part of the visual output is non-predictable. To demonstrate the robustness of the presented learning algorithm, the work is not carried out on plain camera images, but on distorted "retinal images" with a decreasing resolution towards the corners. In the third experimental chapter, a model for grasping to extrafoveal (non-fixated) targets is presented. It is implemented on a robot setup, consisting of a camera head and a robot arm. This model is based on the premotor theory of attention (Rizzolatti et al., 1994) and adds one specific hypothesis: Attention shifts caused by saccade programming imply a prediction of the retinal foveal images after the saccade. For this purpose, the visual forward model from the preceding study is used. Based on this model, several grasping modes are compared; the obtained results are qualitatively congruent with the performance that can be expected from human subjects. The fourth study is based on the theory that visual perception of space and shape is based on an internal simulation process which relies on forward models (Moeller, 1999). This theory is tested by synthetic modeling in the task domain of block pushing with a robot arm.


Best Sellers



Product Details
  • ISBN-13: 9783832518998
  • Publisher: Logos Verlag Berlin
  • Publisher Imprint: Logos Verlag Berlin
  • Height: 210 mm
  • No of Pages: 310
  • Series Title: Mpi Biological Cybernetics
  • Weight: 700 gr
  • ISBN-10: 3832518991
  • Publisher Date: 04 Aug 2008
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 0 mm
  • Width: 145 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Adaptive Internal Models for Motor Control and Visual Prediction
Logos Verlag Berlin -
Adaptive Internal Models for Motor Control and Visual Prediction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Adaptive Internal Models for Motor Control and Visual Prediction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!