Cyber-physical systems (CPS) are "engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components." CPS can be small and closed, such as an artificial pancreas, or very large, complex, and interconnected, such as a regional energy grid. CPS engineering focuses on managing inter- dependencies and impact of physical aspects on cyber aspects, and vice versa. With the development of low-cost sensing, powerful embedded system hardware, and widely deployed communication networks, the reliance on CPS for system functionality has dramatically increased. These technical developments in combination with the creation of a workforce skilled in engineering CPS will allow the deployment of increasingly capable, adaptable, and trustworthy systems.
Engineers responsible for developing CPS but lacking the appropriate education or training may not fully understand at an appropriate depth, on the one hand, the technical issues associated with the CPS software and hardware or, on the other hand, techniques for physical system modeling, energy and power, actuation, signal processing, and control. In addition, these engineers may be designing and implementing life-critical systems without appropriate formal training in CPS methods needed for verification and to assure safety, reliability, and security.
A workforce with the appropriate education, training, and skills will be better positioned to create and manage the next generation of CPS solutions. A 21st Century Cyber-Physical Systems Education examines the intellectual content of the emerging field of CPS and its implications for engineering and computer science education. This report is intended to inform those who might support efforts to develop curricula and materials; faculty and university administrators; industries with needs for CPS workers; and current and potential students about intellectual foundations, workforce requirements, employment opportunities, and curricular needs.