Home > Computer & Internet > Computer programming / software development > Algorithms & data structures > 15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms
3%
15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms

15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms

          
5
4
3
2
1

International Edition


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

Create more effective and powerful data science solutions by learning when, where, and how to apply key math principles that drive most data science algorithms

Key Features:

- Understand key data science algorithms with Python-based examples

- Increase the impact of your data science solutions by learning how to apply existing algorithms

- Take your data science solutions to the next level by learning how to create new algorithms

- Purchase of the print or Kindle book includes a free PDF eBook

Book Description:

Data science combines the power of data with the rigor of scientific methodology, with mathematics providing the tools and frameworks for analysis, algorithm development, and deriving insights. As machine learning algorithms become increasingly complex, a solid grounding in math is crucial for data scientists. David Hoyle, with over 30 years of experience in statistical and mathematical modeling, brings unparalleled industrial expertise to this book, drawing from his work in building predictive models for the world's largest retailers.

Encompassing 15 crucial concepts, this book covers a spectrum of mathematical techniques to help you understand a vast range of data science algorithms and applications. Starting with essential foundational concepts, such as random variables and probability distributions, you'll learn why data varies, and explore matrices and linear algebra to transform that data. Building upon this foundation, the book spans general intermediate concepts, such as model complexity and network analysis, as well as advanced concepts such as kernel-based learning and information theory. Each concept is illustrated with Python code snippets demonstrating their practical application to solve problems.

By the end of the book, you'll have the confidence to apply key mathematical concepts to your data science challenges.

What You Will Learn:

- Master foundational concepts that underpin all data science applications

- Use advanced techniques to elevate your data science proficiency

- Apply data science concepts to solve real-world data science challenges

- Implement the NumPy, SciPy, and scikit-learn concepts in Python

- Build predictive machine learning models with mathematical concepts

- Gain expertise in Bayesian non-parametric methods for advanced probabilistic modeling

- Acquire mathematical skills tailored for time-series and network data types

Who this book is for:

This book is for data scientists, machine learning engineers, and data analysts who already use data science tools and libraries but want to learn more about the underlying math. Whether you're looking to build upon the math you already know, or need insights into when and how to adopt tools and libraries to your data science problem, this book is for you. Organized into essential, general, and selected concepts, this book is for both practitioners just starting out on their data science journey and experienced data scientists.

Table of Contents

- Recap of Mathematical Notation and Terminology

- Random Variables and Probability Distributions

- Matrices and Linear Algebra

- Loss Functions and Optimization

- Probabilistic Modeling

- Time Series and Forecasting

- Hypothesis Testing

- Model Complexity

- Function Decomposition

- Network Analysis

- Dynamical Systems

- Kernel Methods

- Information Theory

- Non-Parametric Bayesian Methods

- Random Matrices


Best Sellers



Product Details
  • ISBN-13: 9781837634187
  • Publisher: Packt Publishing
  • Publisher Imprint: Packt Publishing
  • Height: 235 mm
  • No of Pages: 510
  • Spine Width: 26 mm
  • Weight: 870 gr
  • ISBN-10: 1837634181
  • Publisher Date: 16 Aug 2024
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Understand and learn how to apply the math behind data science algorithms
  • Width: 191 mm


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms
Packt Publishing -
15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

15 Math Concepts Every Data Scientist Should Know: Understand and learn how to apply the math behind data science algorithms

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!