John Tainer

John TainerProf. John A. Tainer trained in X-ray crystallography, biochemistry, and computation. With this foundation, he contributed to structural biochemistry for the biology for DNA repair, reactive oxygen control, the immune response, and other stress resposes for >20 years. His NCI-funded papers report robust structural and biophysical measurements to advance understanding of cellular stress responses that are evolutionarily conserved and important in preserving genome stability and preventing diseases in humans. His methods, results, and concepts have stood the test of time: they are often used and cited >30,000 total times.

At Scripps, Prof. Tainer created and ran the Scripps NSF Computational Center for Macromolecular Structure along with an NIH P01 on Metalloprotein Structure and Design. He also helped develop and utilize the Scripps share of the NSF San Diego Supercomputer Center. At LBL, he developed and directed the $2.9 million/year DOE Program "Molecular Assemblies Genes and Genomics Integrated Efficiently" (MAGGIE) from 2004-2011.

At Berkeley, Prof. Tainer designed, developed, and directed the world's only dual endstation synchrotron beamline SIBYLS (Structurally Integrated BiologY for Life Sciences), used by >200 NIH labs. This unique technology integrates high flux small angle x-ray scattering (SAXS) and macromolecular X-ray crystallography (MX). At SIBYLS his lab develop, optimize, and apply technologies to determine accurate structures, conformations and assemblies both in solution and at high resolution. His lab defined an R-factor gap in MX revealing an untapped potential for insights on nanoscale structures by better modeling of bound solvent and flexible regions.

At the University of Texas MD Anderson Cancer Center, Prof. Tainer is joining biochemistry and biophysics to fluorescent imaging measures of protein and RNA interactions on DNA for mechanistic insights. He is integrating these data with cryo-EM, MX and SAXS structures by linking MD Anderson and SIBYLS facilities.

As an originator of applying proteins from thermophiles to defining dynamic structures and functional conformations, Prof. Tainer develop methods for measurements on structures including conformations, and assemblies in solution. Prof. Tainer has combined cryo-EM and X-ray structures with biochemistry to define functional assemblies. His lab introduced new equations for analyzing X-ray scattering for flexible macromolecules and complexes. His lab also defined a novel SAXS invariant: the first discovered since the Porod invariant 60 years ago. The defined parameters quantitatively assess flexibility, measure intermolecular distances, determine data to model agreement, and reduce false positives.

Prof. Tainer has a track record of successful collaborations, completing projects, sharing innovating approaches and technologies, developing insights along with new structural data, and providing fundamentally important technologies that improve the ways others do their research. He has benefited from continuous peer-reviewed NCI funding since 1999. NCI support has allowed Prof. Tainer to develop expertise in the methods development and in the structural biology of DNA repair, immune responses, and other stress. Read More Read Less

2 results found
List viewGrid view
Sort By:
1.
Small Angle Scattering Part A: Methods for Structural Investigation8 % NR
Publisher: Elsevier Science
No Review Yet
₹16,915
₹15,562
Binding:
Hardback
Release:
01 Sep 2022
Language:
English
International Edition
Ships within 18-20 Days Explain..
Free Shipping in India and low cost Worldwide.
2.
Scattering Methods in Structural Biology Part B9 % NR
Publisher: Elsevier Science
No Review Yet
₹16,915
₹15,393
Binding:
Hardback
Release:
01 Oct 2022
Language:
English
International Edition
Ships within 18-20 Days Explain..
Free Shipping in India and low cost Worldwide.
No more records found